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Based on the geometrical optics approximation, we analyze the effects of non-Kolmogorov turbulence on the
spiral spectrum of the orbital angular momentum (OAM) of Airy–Schell beams. Our numerical results of
Airy–Schell beams on the horizontal path show that the beam spreading due to diffraction is smaller for shorter
wavelengths, a smaller OAM quantum number, a larger radius of the main ring, and a higher arbitrary trans-
verse scale in weak turbulence. The oscillation frequency of the mode probability density of Airy–Schell beams
in the radial direction is much lower than that of Hankel–Bessel beams. The mode probability densities of
Airy–Schell and Hankel–Bessel beams are remarkably dependent on the wavelength and OAM quantum num-
ber. In order to improve the mode probability density, Airy–Schell beams with shorter wavelengths and lower
OAM quantum numbers may be the better choice, which is diametrically opposite to Hankel–Bessel beams. Our
research provides a reasonable basis for selecting light sources and precise tracking.
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According to its exotic features, such as non-diffracting[1],
self-accelerating[2–4], and self-healing[5,6] in vacuum, more
and more attention has been paid to Airy beams. The
propagation properties of Airy beams in atmospheric tur-
bulence, such as scintillation[7,8], evolution[9], thermal
blooming[10], beam wander[11], average intensity distribu-
tion[12], and average spreading[13] also have been carefully
investigated. But, as we know, there are almost no discus-
sions with respect to the effects of turbulence on the spiral
spectrum of the orbital angular momentum (OAM) modes
of Airy–Schell (AS) beams.
Considering the needs of precise tracking and significant

deviations from Kolmogorov’s model in certain atmos-
pheric experiments[14], in this Letter, we discuss the radial
distribution of the mode probability density (MPD) and
crosstalk probability density (CPD) of the OAM modes
of AS beams in the horizontal path through the non-
Kolmogorov atmosphere in various situations. To reveal
the distinctive properties of the spiral spectrum of the
OAM of the AS beams in a turbulent atmosphere, we also
compare them with Hankel–Bessel (HB) beams[15].
On account of the Gaussian-like Airy beam in

far-field region, for long-distance transmissions, both trun-
cated Airy and HB beams become spherical-like beams.
Based on the Retov approximation, in the weak fluc-
tuation region[16], q ¼ z∕kρ2pl < 1, where qΛ < 1, ρpl is the
spatial coherence radius of a plane wave, k is the wave
number of light, and Λ ¼ 2z∕kW 2 is the Gaussian beam
parameter characterizing the spot size W at the receiver.
In the half-space z > 0, the complex amplitude of an Airy
beam is given by

Aiðr;φ; zÞ ¼ Ail0ðr;φ; zÞ exp½ψ1ðr;φ; zÞ�; (1)

where r ¼ jrj, r ¼ ðx; yÞ is the two-dimensional position
vector in the source plane, φ is the azimuthal angle,
and z is the propagation distance. ψ1ðr;φ; zÞ is the com-
plex phase of waves propagating through turbulence
and Ail0ðr;φ; zÞ is the normalized Airy-Gaussian model
at the z plane with the OAM quantum number l0 in free
atmospheric turbulence. In the paraxial approximation,
Ail0ðr;φ; zÞ has the form[17]

Ail0ðr;φ; zÞ ¼ −
ik
z
ω0ðr0 − ω0a2ÞJl0

�
krr0
z

�

× exp
�
ik

r2

2z
þ a3

3

�
expð−il0φÞ; (2)

where ω0 is associated with the arbitrary transverse scale,
r0 is the approximate radius of the main ring, and a is the
exponential truncation. Jl0ðkrr0∕zÞ denotes the lth0 order
Bessel function of the first kind.

For a paraxial beam, the second-order cross-spectral
density of the partially coherent case is defined by the stat-
istical average over the ensembles as the following[16,18]:

W ðr; r 0; zÞ ¼ hEðr;φ; zÞE�ðr 0;φ0; zÞi; (3)

where Eðr;φ; zÞ is the complex amplitude of the AS beams
and h i represents the ensemble average of the source and
atmospheric turbulence. In free space, Ref. [19] indicates
that the normalized correlation function of Gaussian–
Schell mode for any distance z is coincident with that
of the original plane (z ¼ 0). Based on the statistical inde-
pendence between the sources and the atmospheric turbu-
lence, the cross- spectral density of AS beams at any
distance z is written as
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W ðr; r 0; zÞ ¼ hAiðr;φ; zÞAi�ðr 0;φ0; zÞiatμðr; r 0;φ;φ0Þ; (4)

where h iat represents the ensemble average of the atmos-
pheric turbulence. The last term of Eq. (4) is defined as the
normalized correlation function of the Schell source and
has the Gaussian form[19,20]

μðr; r 0;φ;φ0Þ ¼ exp
�
−
r 02 þ r2 − 2rr 0 cosðφ0 − φÞ

2ρ2s

�
;

ρs > 0; (5)

where ρs is the correlation radius of the Schell source at
source plane z ¼ 0. By substituting Eqs. (1) and (5) into
Eq. (4), we get

W ðr; r 0; zÞ ¼ Ail0ðr;φ; zÞAi�l0ðr 0;φ0; zÞ
× hexp½ψ1ðr;φ; zÞ þ ψ�

1ðr 0;φ0; zÞ�iat
× exp

�
−
r 02 þ r2 − 2rr 0 cosðφ0 − φÞ

2ρ2s

�
: (6)

By the quadratic approximation of the wave structure
function, we can obtain the middle term on the right of the
equals sign in the above formula as follows[16]

hexp½ψ1ðr;φ; zÞ þ ψ�
1ðr 0;φ0; zÞ�iat

¼ exp
�
−
1
2
Dψðr; r 0; zÞ

�

¼ exp
�
−
r 02 þ r2 − 2rr 0 cosðφ0 − φÞ

ρ20

�
; (7)

where Dψðr; r 0; zÞ is the wave structure function, ρ0 is the
spatial coherence radius of a spherical wave, and the
non-Kolmogorov turbulence is given by[21]

ρ0 ¼
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3 < α < 4; (8)

where α is the non-Kolmogorov turbulence parameter, and
ΓðÞ denotes the gamma function. C2

n is the generalized
refractive-index structure constant over the path for hori-
zontal homogeneous atmospheric propagation, character-
izing the strength of the turbulence[16,22].
By combining Eqs. (6) and (7), we obtain the cross-

spectral density of the AS beams

W ðr; r 0; zÞ ¼ Ail0ðr;φ; zÞAi�l0ðr 0;φ0; zÞ

× exp
�
−
r 02 þ r2 − 2rr 0 cosðφ0 − φÞ

~ρ20

�
; (9)

where 1∕~ρ20 ¼ 1∕ð2ρ2s0Þ þ 1∕ρ20, and ~ρ0 is the effective spa-
tial coherence radius for the AS beams, which includes the

effects of the spatial coherence of the source and the
correlated lengths of the phase fluctuations.

The function Eðr;φ; zÞ can be written as a superposition
of the plane waves with phase expð−ilφÞ[23]

Eðr;φ; zÞ ¼ 1������
2π

p
X
l

βlðr; zÞ expð−ilφÞ; (10)

where l is the OAM quantum number and βlðr; zÞ is given
by the integral

βlðr; zÞ ¼
1������
2π

p
Z

2π

0
Eðr;φ; zÞ expðilφÞdφ: (11)

The radial distribution functions of the signal photons
with the OAM quantum number l can be expressed as
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We call hjβlðr; zÞj2i the MPD of the signal photon in the
case of l ¼ l0. For l ≠ l0, hjβlðr; zÞj2i is defined as the CPD,
which provides quantitative predictions for the integrity
of free-space quantum communication systems[24,25].

In this section, we carry out a comparative study of HB
beams, and in the horizontal homogeneous anisotropic
channel, the MPD and CPD of AS beams through
non-Kolmogorov turbulence as the functions of the radial
position r in the output plane are shown in Figs. 1–7 with
the parameters z ¼ 1 km, l0 ¼ 1, α ¼ 3.67, r0 ¼ 1 mm,
ω0 ¼ 0.01 m, a ¼ 0.05, λ ¼ 532 nm, C2

n ¼ 10−16 m3−α,
and ρs ¼ ∞, unless otherwise indicated.

Figure 1 plots the MPD and CPD of the OAM for AS
and HB beams versus the spatial correlation radius of
the source ρs from 0 to 1 m for the different refractive in-
dex structure parameter C 2

n. From Figs. 1(a) and 1(c), it
can be seen that the MPD of AS and HB beams for differ-
ent C2

n increases steeply with the increase of the spatial
correlation radius of the source ρs and tends to a stable
value with further increase of ρs. Remarkably, the degra-
dation induced by strong turbulence C2

n ¼ 10−14 (in the
weak fluctuation region) is less significant when the
spatial coherence of the beam is reduced. By comparing
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Fig. 1(a) with Fig. 1(c), the impact of the incoherence of
the beam on the MPD of AS beams is greater than on HB
ones, and the more incoherent the beam is, the greater the
effects of turbulence on the OAM states of the beams are.
Figures 1(b) and 1(d) show the CPD of AS and HB beams
as the functions of the spatial correlation radius of the
source ρs. For C2

n < 10−15, the CPD first increases and
then decreases, so it marked a peak value with increasing
the spatial correlation radius of the source ρs. But for
C2

n > 10−15, the CPD increases first and then tends to sat-
uration values. To summarize from Fig. 1, the single-mode
transfer of fully coherent beams is superior to that of
partially coherent beams. So in the following discussions,
the fully coherent beam ρs ¼ ∞ is adopted.
Figure 2(a) depicts the distribution of the MPD of AS

beams along the direction of r for various l0 with l ¼ l0.
Figure 2(b) shows the CPD versus r for different Δl when
l0 ¼ 1. Considering the symmetry of the Bessel functions
for l ¼ l0, we discuss l > l0 in the following. From
Fig. 2(a), we can see that the MPD of AS beams decays

with l0 increasing. The peak values of the MPD
hjβl0ðr; zÞj2i move away from r ¼ 0, and the widths of
curves become wider as l0 increases. For AS beams, a
smaller l0 may be the best option for communication. It
is worth noting that in Fig. 2(b), as Δl gets larger, the
peaks of the CPD of AS beams move outward and down-
ward, while the minimum values of the CPD stay the same
place for different Δl. Compared with HB beams, the
opposite tendencies of the MPD hjβl0ðr; zÞj2i of HB beams
are observed. From Fig. 2(a)–2(d), one can see that as r
increases, the MPD and CPD decrease. But the oscillatory
curves of HB beams decay more quickly to zero compared
to AS beams.

In Fig. 3(a), we display the variation of the MPD of AS
and HB beams against r for selected wavelength λ ¼ 532,
632.8, 850, and 1550 nm. Figure 3(a) illustrates that the
shorter wavelength λ will give rise to a larger MPD of AS
beams in the output plane. The variation tendency of the
MPD and CPD of AS beams are the same for different
wavelengths λ, but the amount of variation is different.
The MPD and CPD versus λ with r ¼ 0.2 are shown in
the Fig. 3(b), which are similar to the results shown in
Ref. [20]. As a comparison, the MPD and CPD of HB
beams are illustrated in Figs. 3(c) and 3(d). Figures 3(c)
and 3(d) show that the increasing λ will give rise to the
broadening of the sub-ring of the MPD. Figure 3(d) also
shows that the variation of the wavelength has relatively
little impact on the CPD of HB beams.

Figure 4 reveals the relationship between the index α of
non-Kolmogorov turbulence and the MPD or CPD of AS
and HB beams. Considering that the dimensions of struc-
ture constant C2

nðz; αÞ are dependent on exponent α for
non-Kolmogorov turbulence, we adopt the generalized
Rytov variance for a spherical wave as a constant[26,27]

to discuss the effects of the index of non-Kolmogorov tur-
bulence on the MPD and CPD of AS and HB beams. The
generalized Rytov variance for a spherical wave is written
as σ2R ¼ −ð2αÞ−1C2

nk3−α∕2zα∕2 cosðαπ∕2Þ cos½ðα− 2Þπ∕4�×
Γðα− 1ÞΓðα∕2ÞΓ½ð2− αÞ∕2�Γ½ð2þ αÞ∕2�∕ΓðαÞ[28]. In this

Fig. 1. MPD and CPD of AS and HB beams versus ρs for
different values of C2

n .

Fig. 2. MPD and CPD of AS and HB beams versus r for different
values of l0.

Fig. 3. MPD and CPD of AS and HB beams versus r with the
different λ.
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Letter, we let σ2R be a constant σ2R ¼ 7 × 10−4 (C2
n ¼

10−16 m3−α α ¼ 3.67), unless mentioned otherwise.
Figure 4 indicates that the changing of index α of non-
Kolmogorov turbulence has no impact on the radii of
the main ring of beams in the output plane, whether
the source beams are AS or HB ones. It can be seen from
Fig. 4(a) that the larger α is, the faster the decay of the
MPD is, and the peak positions of AS beams are closer
to r ¼ 0. Figure 4(b) illustrates that the CPD of AS beams
decreases as the non-Kolmogorov parameter α increases
for Δl. It is shown in Fig. 4(c) that the index α of
non-Kolmogorov turbulence has a negligible impact on
the mode probability of HB beams in the weak fluctuation
region. It is also shown that the CPD of HB beams
increases rapidly as α varies from 3.07 to 3.97. A smaller
α will obtain a larger MPD in output plane, which is
shown in Fig. 4.
Figure 5 shows the MPD and CPD of AS and HB beams

as the function of r for different values of the refractive
index structure constant C2

n with α ¼ 3.67. From Fig. 5,
we can see that the ring widths of the MPD of AS

beams or HB beams are independent of the value of
C2

n. Obviously, the larger the refractive index structure
constant C2

n, the smaller the MPD of the AS beams is.
For HB beams, in Fig. 5(c), there is no influence of turbu-
lence on the MPD for C2

n ¼ 10−17, 10−16 m3−α. By further
increasing the turbulence strength, the MPD of the HB
beams begin to drop. The results of Fig. 5(d) show that
the higher C2

n corresponds to the larger CPD at Δl ¼ 1.
For Δl ¼ 2, further simulation indicates that the maxi-
mum value of the CPD of AS beams does not appear
at the weak (C2

n < 10−15) or stronger (C2
n > 10−15) turbu-

lence, but at the middle turbulence (C2
n ¼ 10−15).

Figure 6 plots the MPD and CPD of AS and HB beams
as a function of r with the propagation distance varying
from z ¼ 0.5 km to z ¼ 1 km. It is entirely reasonable that
the MPD or CPD decreases as the propagation distance z
increases. The CPD density of AS or HB beams is always
symmetrical about l ¼ l0. It can be observed that the resil-
ience against perturbations of turbulence disappears for
the long propagation distance, then both AS and HB
beams become Laguerre–Gaussian ones[29]. Using adaptive
optics[30,31], the harmful effects of atmospheric turbulence
for short distances can be tolerated or compensated.

Figure 7(a) displays that the truncation factor of AS
beams has less impact on the MPD except for a truncation
factor larger than 0.3, which agrees well with the fact that
the Airy beams retain all their features for a ≪ 1[5]. The
changes of the MPD versus r are plotted in Figs. 7(b)
and 7(c) with different radii for the main Airy ring r0
and the arbitrary transverse scale ω0. It is shown that
the MPD increases as the main Airy ring r0 increases,
which is similar to the tendency reflected in radial scale
ω0. With the decrease of r0, the curves of probability
become flatter and the central positions go away from
r0, while radial scale ω0 has no impact on the central posi-
tions of AS beams. Figures 7(b) and 7(c) show that beam
spreading due to diffraction is smaller for larger r0 and ω0.

The change tendency of CPD is analogous to that of the
MPD shown in Fig. 7; to avoid overly lengthy descrip-
tions, the CPD is not plotted in Fig. 7.

Fig. 4. MPD and CPD of AS and HB beams versus r for the
different indexes α with σ2R ¼ 7 × 10−4.

Fig. 5. MPD and CPD of AS and HB beams versus r for different
C2

n with α ¼ 11∕3.
Fig. 6. MPD and CPD of AS and HB beams versus r when the
propagation distance varies from z ¼ 0.5 km to z ¼ 1 km.
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In this Letter, the radial distributions of MPD and CPD
in the z plane of the AS beams propagating through non-
Kolmogorov turbulence are investigated in detail and are
compared with HB beams. Our results indicate that in the
weak fluctuation region, the single-mode transfer of fully
coherent beams can exhibit a better performance than
that of partially coherent beams. In the homogeneous
anisotropic horizontal channel, the characteristics of the
propagation of AS beams and all kinds of parameters tied
closely to the transmission of the probability density
distribution, CPD, and the peak positions of the MPD
are analyzed. The results show that the peak positions
of the MPD move away from r ¼ 0 with the increase in
the OAM quantum number l0, wavelength λ, and the
propagation distance z. However, they show the opposite
trend when the non-Kolmogorov turbulence parameter α,
the refractive index structure constant C2

n, and the radius
of the main Airy ring r0 increase simultaneously. The
MPD of AS is less affected for shorter wavelengths λ,
smaller OAM quantum numbers l0, larger r0, and higher
ω0 in the weak fluctuation region. A larger MPD comes
with a larger CPD in the vast majority of instances or vice
versa. Compared with HB beams, the important difference
is that the oscillation frequency of HB beams is much
faster than that of AS beams. The MPD of AS and HB
beams is remarkably dependent on parameters λ and l0.
HB beams with larger λ and l0 may be the best choice,
which is opposite to AS beams. Our research will serve
as a theoretical underpinning for the precise tracking
and design of an adaptive optics system that optically
compensates for these turbulence effects on the OAM
states of AS beams.
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